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Abstract

Human hair dermal papilla cells (HHDPCs) play a significant role in hair growth. This
study found that human umbilical cord mesenchymal stem cell-derived exosomes
(UC-MSC-Es) effectively enhanced cell growth of HHDPCs. UC-MSC-Es has a size
range of 30—-180nm and expression of CD9, CD63, CD81, CD73, and TSG101.
UC-MSC-Es significantly increased cell populations of HHDPCs in the S and G2/M
phases. UC-MSC-Es also increased the expression of cell cycle-related proteins,
B-catenin, and cyclin D1. Further mechanistic studies demonstrated that UC-MSC-Es
promoted the phosphorylation of Akt and GSK-3, and the inhibition of PI3K and Akt
reduced the proliferative effects of UC-MSC-Es. Collectively, these findings suggest
that UC-MSC-Es have a potential effect in treating hair loss through modulating PI3K
and Akt-dependent pathways in HHDPCs.

Introduction

A hair follicle is a tube-like structure in the skin that surrounds the root of a hair. The
dermal papilla cells are essential for the hair growth cycle, which includes the ana-
gen, catagen, and telogen phases [1,2]. The factors of hair loss are complex and
include genetic factors [3], as well as mineral deficiencies [4], hormonal imbalances
[5], and psychological stress [6]. The FDA has approved several therapeutic drugs
for hair loss, including finasteride, minoxidil, and baricitinib [7,8]. Finasteride inhib-
its the conversion of testosterone to dihydrotestosterone [9], minoxidil enhances
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microcirculatory support to follicles [10], and baricitinib targets inflammatory
pathways to promote hair regrowth [11]. The potential adverse side effects of these
medications include decreased libido, erectile dysfunction, skin irritation, upper
respiratory tract infections, and high blood pressure. Therefore, there is an urgent
need for safer alternative treatments for hair loss.

Extracellular vesicles are categorized into four main classes based on their
biogenesis, size, and protein markers: exosomes, microvesicles, oncosomes, and
apoptotic bodies [12]. Exosomes are the smallest category, ranging from 30 to
200nm. They play pivotal roles in regulating biological functions by transporting bio-
molecules, such as lipids, proteins, and nucleic acids [13]. In a clinical environment,
exosomes can be utilized as disease biomarkers, therapeutic agents, and compo-
nents of drug delivery systems, as well as in vaccine formulations [14]. Researchers
dealing with hair restoration have investigated the therapeutic effects of exosomes
derived from adipose-derived stem cells [15], dermal papilla cells, keratinocytes,
human amniotic fluid stem cells, and myeloid-derived suppressor cells [16]. Exo-
somes derived from umbilical cord mesenchymal stem cells (UC-MSCs) have
proven highly valuable in skin repair [17].

The PI3K/Akt signaling pathway is critical for maintaining the hair-inductive prop-
erties of human hair follicle dermal papilla cells (DPCs). Activation of this pathway
enhances trichogenic gene expression and supports hair follicle and DPC growth [18].
Natural extracts from Butterfly Pea, Emblica Fruits, Kaffir Lime, Soybean, and Thunber-
gia Laurifolia have been shown to induce autophagy and enhance stemness markers,
essential for DPC growth, via the Akt signaling pathway [19]. Additionally, micro-current
electrical stimulation enhances hair follicle regeneration by activating the PI3K/Akt path-
way [20]. The results highlight the crucial importance of the PI3K/Akt signaling pathway
in regulating dermal papilla cell function and promoting hair follicle growth.

The current study examined the effects of UC-MSC-derived exosomes
(UC-MSC-Es) on human hair dermal papilla cells (HHDPCs). UC-MSC-Es enhanced
the proliferation of HHDPCs and modulated the phosphorylation of Akt and GSK-3.
PI3K and Akt inhibitors reversed the UC-MSC-Es-induced cell growth, suggesting
that the proliferative effect may involve the PI3K and Akt signaling pathways. These
findings provide important insights applicable to the development of treatments for
hair loss.

Materials and methods
Materials

UC-MSC-Es were provided by Taiwan Bio Therapeutics Co (HSZ, TWN). Human hair
dermal papilla cells (HHDPCs, Cat. 2400) were purchased from the Bioresource Col-
lection and Research Center (TPE, TWN). Mesenchymal stem cell medium (MSCM,
Cat. 7501), mesenchymal stem cell growth supplement (MSCGS, Cat. 7552), and
penicillin/streptomycin solution (Cat. 0503) were obtained from ScienCell Research
Laboratories (CA, USA). PI/RNase Staining Buffer (Cat. 550825) was obtained from
BD Bioscience (NJ, USA). Pierce™ RIPA Buffer (Cat. 89901) and fetal bovine serum
(FBS, Cat. 0025) were acquired from Thermo Fisher (MA, USA). Idelalisib (Cat.
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HY-13026) and MK-2206 dihydrochloride (Cat. HY-10358) were procured from MedChemExpress (NJ, USA). WST-1 (Cat.
11644807001) was purchased from Roche (Basel, Switzerland). Dimethyl sulfoxide (DMSO), phenylmethylsulfonyl fluoride
(PMSF), and phosphatase inhibitors were purchased from Sigma-Aldrich (MO, USA). Protein assay dye reagent concen-
trate was obtained from BIORAD (CA, USA). Antibodies against Akt (Cat. 4691S), phospho-Akt (Ser473, Cat. 4060S),
phospho-Akt (Thr308, Cat. 2965S), phospho-GSK3p (Cat. 9323), GSK3p (Cat. 12456), CD9 (Cat. 13174), TSG101 (Cat.
72312), and Calnexin (Cat. 2679) as well as horseradish peroxidase (HRP)-conjugated secondary antibodies were pur-
chased from Cell Signaling (MA, USA). Antibodies against cyclin D1 (Cat. ab16663), CD63 (Cat. ab134045), (Cat. ab8226),
and B-catenin (Cat. ab32572) were purchased from Abcam (Cambs, UK). Antibodies against CD81 (Cat. ExoAB-CD81A-1)
were purchased from SBI (CA, USA). Antibodies against CD73 (Cat. 12231-1-AP) and GAPDH (Cat. 10494-1-AP) were
purchased from Proteintech (IL, USA).

Exosome isolation

UC-MSC cells (Taiwan Bio Therapeutics Co. Ltd., Hsinchu, Taiwan) were expanded in culture using exosome-depletion
MEMa medium until reaching confluency of approximately 80%. The conditioned medium was then collected and filtered
through 0.22 pM filters. Exosomes were subsequently isolated via Tangential Flow Filtration using a 300 kDa cassette
(Sartorius, Goettingen, Germany).

Nanoparticle tracking analysis

Nanoparticle tracking analysis is used to determine the size distribution of particles in fluids by analyzing the rate of
Brownian motion using dynamic light scattering. Following TFF purification, the concentrated exosome solution was
characterized using NanoSight NS300 (Malvern Panalytical Ltd., Malvern, UK). Briefly, samples were diluted in PBS to a
final volume of 1 mL, with the concentration adjusted by observing a particle/frame rate of 30—80. Diluted samples were
injected into the nanoparticle tracking analysis laser chamber to determine the particle size distribution in the concentrated
exosome solution.

Transmission electron microscopy analysis

Samples were fixed in 2.5% glutaraldehyde at 4 °C overnight to preserve their structural integrity. After fixation, the
samples were thoroughly washed with PBS to eliminate any residual fixative. The samples were then placed onto
formvar-coated carbon grids and allowed to adhere properly. Next, the grids were negatively stained with a 1% aqueous
solution of phosphotungstic acid (pH 7.0) for 60 seconds to enhance contrast. Visualization was carried out using a transmis-
sion electron microscope (TEM) (Hitachi, Japan) operating at 80kV to examine the morphology and size of the vesicles.

Cell proliferation assay

HHDPCs were seeded in a 24-well plate at a density of 2 x 102 cells per well and incubated at 37°C for 24 h. The cells
were treated with either PBS, exosomes, or minoxidil and incubated in a 37°C incubator for 72 h. Following this incubation
period, 20 uL of WST-1 was added to each well to assess cell proliferation and viability. This assay relies on converting
the tetrazolium salt WST-1 into a colored formazan dye by mitochondrial dehydrogenase activity in viable cells. The cells
were then incubated at 37°C for an additional 2 h. Absorbance readings were obtained using a spectrophotometer at
450nm and 620 nm.

Cell cycle analysis

HHDPCs were seeded onto a 6-well plate at a density of 2 x 10* cells per well. Following incubation at 37°C for 24 h, The
cells were treated with either PBS or exosomes in a 37°C incubator for 48 h. Following incubation, the cells were collected
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and centrifuged at 200g for 8 min to remove the supernatant. After 70% ethanol was added, the samples were stored at
-20 °C overnight. A second round of centrifugation was then performed to eliminate the supernatant. The resulting pellet
was rinsed once using PBS before being stained with PI/RNase staining buffer for 10 min. Analysis was conducted using
an Attune NxT Flow Cytometer (Waltham, MA, USA).

Immunoblotting analysis

HHDPCs were seeded onto a 6-well plate at a density of 1 x 10° cells per well after incubating at 37°C for 24 h. The cells
were treated with either PBS or exosomes in a 37°C incubator for the specified duration. After incubation, the cells were
collected, and the supernatant was discarded. The cells were then lysed with RIPA buffer containing 1 mM PMSF, 1% pro-
tease inhibitor cocktail, and 1% phosphatase inhibitor cocktail. The lysates were centrifuged at 19,000 g after sonication,
and the supernatant was collected. The protein concentration was determined using a protein assay dye reagent. Western
blotting was performed with the proteins equally distributed on a sodium dodecyl sulfate-polyacrylamide post-
electrophoresis (SDS-PAGE) gel. Following electrophoresis, the proteins were transferred to nitrocellulose membranes.
To minimize nonspecific binding, the membranes were incubated with a 5% skim milk solution in 0.1% TBST for 60 min,
followed by TBST washes. The membranes were then exposed to specific primary antibodies (cyclin D1, 3-catenin, Akt,
phospho-Akt (Ser473), phospho-Akt (Thr308), phospho-GSK3f, GSK3pB, and GAPDH) at 4°C overnight. After a second
round of TBST washing, the cells were subjected to secondary antibodies attached to HRP-conjugated secondary anti-
bodies for 60 min. The protein bands were visualized via the ChemiDoc MP Imaging System from BIORAD (CA, USA).

The identification of exosomes was performed via SDS-PAGE with equal quantities of proteins in each concentrated
exosome sample. The concentrated exosome samples were then subjected to SDS-PAGE and transferred to PVDF
membranes, which were then blocked in 5% BSA at room temperature for 1 h. After incubation with primary antibodies
(CD9, CD63, CD81, CD73, TSG101, and Calnexin) at 4°C overnight, the membranes were washed and incubated with
HRP-conjugated secondary antibodies at room temperature for 1 h. The protein bands were detected using a chemilumi-
nescence system (Amersham Biosciences located in Piscataway Corp., NJ, USA) to identify UC-MSC-Es. The brightness
of the bands was measured using a UVP Biospectrum imaging system (UVP, CA, USA).

Statistical analysis

Statistical analyses were conducted with data expressed as the mean + SEM. Student’s t-test was used to compare data
from each group, analyzed using SigmaPlot (Systat Software, San Jose, CA, USA). Statistical significance was deter-
mined at a p-value of less than 0.05.

Results
Identification of UC-MSC-Es

UC-MSC-Es were characterized using TEM, nanoparticle tracking analysis, and western blot analysis. TEM revealed
intact, cup-shaped membrane vesicles, with particles ranging in size from 30 to 180nm (Fig 1A). Western blot analysis
revealed the expression of exosome-specific CD9, CD63, CD81, CD73, and TSG101 in concentrated, purified exosomes.
Calnexin is a protein that resides in the endoplasmic reticulum and is typically not found in exosomes. In this study, cal-
nexin was not detected in the conditioned medium and extracellular vesicles (Fig 1B). These results confirm that the extra-
cellular vesicles are intact, purified exosomes that have been secreted into the extracellular environment. They are further
characterized by their distinct size, morphology, and expression of specific markers.

Influence of UC-MSC-Es on cellular proliferation in HHDPCs

Hair dermal papilla cells play a significant role in hair growth. The impact of UC-MSC-Es on the proliferation of HHDPCs
was evaluated. Fig 2 shows that UC-MSC-Es, at concentrations of 1x10'°, 3x 10, and 1 x 10" particles/mL, induced an
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Fig 1. Identification of exosomes derived from UC-MSCs (UC-MSC-Es). (A) Exosome morphology and sizes were measured using transmission
electron microscopy (up) and nanoparticle tracking analysis assay (down), respectively. (B) Protein expression levels of conditioned medium (CM) and
extracellular vesicles (EV) were determined by western blotting. The results were conducted with three independent experiments (n=4).

https://doi.org/10.1371/journal.pone.0320154.9001
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Fig 2. UC-MSC-Es enhance the proliferation of human hair dermal papilla cells. HHDPCs (2 x 103 cells) were incubated with UC-MSC-Es (1 x 10",
3x10', and 1% 10" particles/mL) or minoxidil (3 and 10 uM) for 72h. Cell proliferation was determined using the WST-1 assay. Data are expressed as
the mean+SEM (n=3 - 12). *p<0.05, compared with the control.

https://doi.org/10.1371/journal.pone.0320154.9002

increase in the proliferation of HHDPC in a concentration-dependent manner. Minoxidil (3 and 10 yM) was used as a posi-
tive control. The UC-MSC-Es demonstrate a significantly enhanced effect compared to minoxidil (Fig 2).

UC-MSC-Es regulate cell cycle in HHDPCs

To understand UC-MSC-Es’ effects on HHDPC proliferation, we examined the cell cycle distribution by treating HHDPCs
with UC-MSC-Es at a concentration of 1 x 10" particles/mL for 48 h. The treatment groups exhibited a notable decrease
in the cell population in the G1 phase, accompanied by an increase in cell populations in the S and G2/M phases (Fig
3). These findings suggest that UC-MSC-Es-induced proliferation of HHDPCs was mediated by promoting S and G2/M
phases.

Modulation of cell cycle-associated protein expression by UC-MSC-Es

The B-catenin signaling pathway plays a crucial role in the proliferation of HHDPCs [21-23]. Cyclin D1, along with
cyclin-dependent kinases, acts as a mitogenic sensor and signaling transducer during the transition from G1 to S phase.
This role of cyclin D1 is also influenced by the B-catenin signaling pathway [24]. Treatment with UC-MSC-Es (1 x 10"
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Fig 3. UC-MSC-Es promote the cell cycle in HHDPC. HHDPCs (2 x 10*) were incubated with PBS or UC-MSC-Es (1 x 10" particles/mL) for 48h. Cell
cycle distribution was assessed using propidium iodide staining and measured by flow cytometry. Quantified flow cytometry results showed cell percent-
ages in the GO/G1, S, and G2/M phases. Data are expressed as the mean+SEM (n=3). *p<0.05, compared with the control.

https://doi.org/10.1371/journal.pone.0320154.9003
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particles/mL) for 48 h significantly increased the expression of both cyclin D1 and B-catenin in HHPDCs (Fig 4). These
findings indicate the integral role of cyclin D1 and B-catenin in UC-MSC-Es-mediated cell proliferation.

UC-MSC-Es increase Akt and GSK-3p3 in HHDPCs

The Akt and GSK-3 signaling pathways play a crucial role in the growth of HHDPCs [25—28]. Akt activation induces
the phosphorylation and subsequent inactivation of GSK-3 at serine 9, stabilizing B-catenin and amplifying its tran-
scriptional activity [29]. We tested whether Akt and GSK-3( are involved in modulating HHDPC proliferation in
response to UC-MSC-Es treatment. Treatment with UC-MSC-Es (1 x 10" particles/mL) for 24 h elevated Akt S473, Akt
T308, and GSK-3p phosphorylation (Fig 5). These findings indicate that Akt and GSK-3p play a significant role in the
UC-MSC-Es-mediated proliferation of HHDPCs.

Role of PI3K and Akt signaling in UC-MSC-Es-induced cell proliferation of HHDPCs

Idelalisib, a PI3K inhibitor, and MK-2206, an Akt inhibitor, were used to investigate the role of the PI3K and Akt path-
ways in UC-MSC-Es-mediated proliferation of HHDPCs. The treatment of idelalisib or MK-2206 significantly decreased
UC-MSC-Es-induced cell growth (Fig 6A). Idelalisib and MK-2206 reduced HHDPC growth by 28.5% and 59.5% in the
UC-MSC-Es treatment group compared with the control group. Furthermore, both idelalisib and MK-2206 significantly
reduced the increase in 3-catenin expression induced by UC-MSC-Es (Fig 6B). These findings suggest that the upreg-
ulation of -catenin is mediated through the PI3K/Akt signaling pathway, supporting its role in the downstream effects of
UC-MSC-Es on the proliferation of HHDPCs.

Discussion

Hair loss can significantly impact a person’s psychological well-being [30]. A variety of treatment options for hair
loss include topical treatments, such as anthralin, calcipotriol, tacrolimus, and corticosteroids, as well as systemic
therapies like minoxidil, methotrexate, and cyclosporine. However, some treatments have notable side effects,
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Fig 4. UC-MSC-Es elevate cyclin D1 and B-catenin expression in HHDPCs. HHDPCs (1 x 106 cells) were incubated with PBS or UC-MSC-Es
(1% 10" particles/mL) for 48h. (A) Cyclin D1 and (B) B-catenin were analyzed by western blotting. The upper panel displays representative images, while
the lower panel shows the quantified protein analysis results. Data are expressed as the mean+SEM (n=4). *p<0.05, compared with the control.

https://doi.org/10.1371/journal.pone.0320154.9004
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Fig 5. UC-MSC-Es elevate Akt and GSK3-B phosphorylation in HHDPCs. HHDPCs (1 x 10° cells) were exposed to PBS or UC-MSC-Es (1x 10" par-
ticles/mL) for 24 h. The phosphorylation and total levels of (A) Akt and (B) GSK-3(3 were determined by immunoblotting, using antibodies that recognize
phosphorylated and total forms of Akt and GSK-3(. The upper panel shows the representative images of immunoblots, while the lower panel shows the
quantified results of protein bands. Data were shown as mean+S.E.M. (n=4). *p<0.05, compared with the control.

https://doi.org/10.1371/journal.pone.0320154.9005

including lymphadenopathy, folliculitis, and hypertrichosis [31]. There is a significant need for safer therapies to treat
hair loss. HHDPCs play a crucial role in inducing the formation of new hair follicles. Recent research indicated that
exosomes isolated from various sources, including adipose-derived stem cells [32], dermal papilla cells [33], human
hair outer root sheath cells, and platelet-lysate exosomes [34], have the potential to stimulate HHDPC proliferation.
UC-MSC-Es have demonstrated potential in tissue regeneration, particularly in improving neuronal survival and pro-
moting functional recovery in optic nerve injuries [35]. Furthermore, these exosomes have been found to accelerate
wound healing, especially when combined with hydrogels by reducing inflammation and promoting angiogenesis and
tissue proliferation [36]. These findings emphasize the wide-ranging therapeutic potential of UC-MSC-Es in various
medical applications. In the current study, UC-MSC-Es were found to enhance the proliferation of HHDPCs (Fig 2).
Analysis of cell cycle distribution showed that UC-MSC-Es promote progression through the G1 phase, leading to an
increased accumulation of cells in the S and G2/M phases, thus contributing to the enhanced proliferation of HHD-
PCs (Fig 3).

PLOS One | https://doi.org/10.1371/journal.pone.0320154  April 30, 2025 8/13



https://doi.org/10.1371/journal.pone.0320154.g005

PLO\Sﬁ\\.- One

A) 1 DMSO
= Idelalisib 10 uM
B MK-2206 10 uM
200-
S
=
3
e
© 1004
O o
o
@)
T
T
0-
PBS
(B)
Idelalisib (10 uM) - — + + - _
MK-2206 (10 uM) -  — — - + +
Exosome (10" particles/ml) - + - + - +
B-Catenin - — -

GAPDH < s S b D S

O DMSO
B Idelalisib 10 yM
B MK-2206 10 uM

B-Catenin/GAPDH
(fold of control)

PBS Exo

Fig 6. PI3K and Akt inhibitors attenuate UC-MSC-Es-induced HHDPC proliferation. HHDPCs (2 x 10° cells) were pretreated with idelalisib (10 uM)
or MK-2206 (10 M) for 1h and then treated with either PBS or UC-MSC-Es (1 x 10" particles/mL) for 72h. (A) Cell proliferation was assessed using the
WST-1 assay. (B) The phosphorylation and total levels of 3-catenin were determined by immunoblotting, using antibodies that recognize phosphorylated
and total forms. Cell number was assessed via the WST-1 assay. Data were shown as mean+S.E.M. (n=3 - 4). *p<0.05, compared with the control.

https://doi.org/10.1371/journal.pone.0320154.9006

The PI3K, Akt, GSK-38, and B-catenin signaling pathways significantly influence hair growth by regulating the activity
and proliferation of hair follicle cells. PI3K and its direct downstream molecule, Akt, are crucial for promoting the prolifer-
ation of various cell types, including dermal papilla cells and keratinocytes [37,38]. Phosphorylation of Akt at serine 473
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and threonine 308, which signifies Akt activation, triggers subsequent phosphorylation of the downstream protein GSK3f3
at serine 9. This cascade promotes B-catenin activity and upregulates cyclin D1, ultimately fostering enhanced hair follicle
development and cell proliferation [24,39].

Much evidence reveals that the activation of Akt plays a central role in hair growth. The water extract of Cacumen
platycladi promotes hair growth by stimulating the proliferation and migration of dermal papilla cells through the phos-
phorylation of Akt and GSK3p, leading to the accumulation of 3-catenin and cyclin D1, which are essential for hair follicle
development [40]. Similarly, ginsenoside Rg4 from ginseng increases the viability and size of dermal papilla spheres,
activates PI3K/Akt signaling, and inhibits GSK3 activity, subsequently activating the -catenin for hair growth [41].
Additionally, the Akt/GSK3 signaling pathway has been shown to restore and regulate hair follicle stem cell activity via
B-catenin [42]. In this study, UC-MSC-Es treatment led to a marked increase in cyclin D1 and p-catenin expression in
HHDPCs (Fig 4). Additionally, UC-MSC-Es treatment elevated the phosphorylation of Akt at S473 and T308 and GSK-3f3
at serine 9 (Fig 5).

Exosomes derived from various types of stem cells, including dermal papilla cells and hypoxia-preconditioned hair
follicle mesenchymal stem cells, are increasingly recognized for their role in promoting hair growth through the activation
of the PI3K/Akt signaling pathway. Notably, exosomes from hypoxia-preconditioned hair follicle mesenchymal stem cells
enhance regenerative therapies by modulating the PI3K/Akt/mTOR pathway, which alleviates oxidative stress and inflam-
mation, indirectly benefiting hair follicle health [43]. Furthermore, dermal papilla cells-derived exosomal miRNAs, including
miR-181a-5p, activate Akt and Wnt/B-catenin pathways, encouraging stem cell proliferation and reducing apoptosis to
facilitate hair growth [44]. These studies highlight the potential of exosome therapy to enhance hair restoration by modu-
lating the PI3K/Akt pathway, which supports hair growth.

Conclusions

In conclusion, we highlight the considerable therapeutic potential of UC-MSC-Es in promoting hair growth. UC-MSC-Es
significantly enhanced the proliferation of HHDPCs by activating the PI3K and Akt signaling pathways (Fig 7). These find-
ings indicate that UC-MSC-Es may provide a new alternative to conventional hair loss treatments, presenting promising
opportunities for future research and clinical applications in hair regeneration.
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Fig 7. A schematic overview of UC-MSC-Es preparation and their effects on HHDPC proliferation. Human umbilical cord mesenchymal stem
cell-derived exosomes (UC-MSC-Es) were concentrated from the culture medium and then applied to human hair dermal papilla cells (HHDPCs). The
UC-MSC-Es facilitated the proliferation of HHDPCs by activating the PI3K and Akt signaling pathways. This activation resulted in the phosphorylation
(inactivation) of GSK3, which subsequently activated B-catenin and led to the upregulation of the cell cycle-related protein cyclin D1. The figure was
created using BioRender (https://BioRender.com) under the appropriate license.
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