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ARTICLE INFO ABSTRACT

Keywords: Alopecia is resulted from various factors that can decrease the regeneration capability of hair follicles and affect
Stem cell hair cycles. This process can be devastating physically and psychologically. Nevertheless, the available treatment
Conditioned medium strategies are limited, and the therapeutic outcomes are not satisfactory. According to the possible pathogenesis
E:‘r):g:f: of nonscarring alopecia, especially androgenetic alopecia, recovering or replenishing the signals responsible for

hair follicle stem cells activation is a promising strategy for hair regeneration. Recently, stem cell-based
therapies, especially those based on the stem cell-derived conditioned medium (CM), which is secreted by stem
cells and is rich in paracrine factors, have been widely explored as the hair regenerative medicine. Several
studies have focused on altering the composition and up-regulating the amount of secretome of the stem cells,
thereby enhancing its therapeutic effects. Besides, stem cell-derived exosomes, which are present in the CM as
message entities, are also promising for hair regrowth. In this review, the up-to-date progress of research efforts
focused on stem cell-based therapies for hair regeneration will be discussed, including their therapeutic po-
tentials with respective merits and demerits, as well as the possible mechanisms.

Hair regeneration

1. Introduction

Attributed to hereditary factors, emotional stress and psychiatric
disorders, alopecia is highly prevalent in current society, resulting in
devastating physical and psychological sequelae (Mohammadi et al.,
2016; Zhang et al., 2014). Considering the role of stem cells in the
pathogenesis, alopecia can be divided into two types: nonscarring alo-
pecia and scarring alopecia (Al-Refu, 2012). In nonscarring alopecia,
the progenitor cells are destructed, while the hair follicle stem cells
(HFSCs) are preserved, which is why this kind of alopecia can be re-
versible (Mohammadi et al., 2016; Owczarczyk-Saczonek et al., 2018).
Androgenetic alopecia (AGA) accounts for the majority of the non-
scarring alopecia cases, affecting up to 80% of Caucasian men by the
age of 80 and nearly 40% of Caucasian women by the age of 70 (Al-
Refu, 2012; Gentile et al., 2017a; Sorbellini et al., 2018).

Currently, there are three therapeutic mechanisms related to the
regeneration of hair follicles (HFs) with the employment of stem cells,
reversing the pathogenesis of hair loss (particularly in AGA), re-
generating HFs with “bulge”, and neogenesis of HFs from a stem cell
culture (Asakawa et al., 2012; Balana et al., 2015; Gentile et al.,
2017b). The action of reversing the pathological mechanism of AGA
may primarily be based on the secreted bioactive factors, including

growth factors and cytokines with which to induct HFSCs in their native
niche. That is, stem cells can secret these factors to trigger host-site
damage repair cascades via paracrine effects (Bak et al., 2018; Inukai
et al., 2013; Katagiri et al., 2013). Therefore, the wide array of sub-
stances that are secreted by stem cells, designated as secretome, have
gained increasing attention for their critical roles in the regulation of
multiple physiological processes. The secretome consists of all the
factors that are secreted into the extracellular space, including proteins,
extracellular vesicles (EVs) and nucleic acids (Beer et al., 2017; Vizoso
et al., 2017). The nutrient medium containing abundant secretome
where stem cells are cultured has been termed as “conditioned medium
(CM)” (Kim et al., 2013). It has been demonstrated that the stem cell-
derived CM exerts positive effects on hair regeneration (Fukuoka and
Suga, 2015). Moreover, to enhance the therapeutic efficacy, a wealth of
researches focusing on altering the composition and upregulating the
amount of secretome have emerged, such as through hypoxic incite-
ment and gene engineering.

In addition, exosomes are the smallest type of EVs, which deliver
functional mRNAs, microRNAs, cytokines and transcription factors to
target cells, and are capable of triggering regeneration (Chevillet et al.,
2014; Liu et al., 2018; Maguire, 2013). As the potent cell-to-cell
transporters, exosomes are also promising for hair regrowth.
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Fig. 1. Currently available treatments for hair loss.

Herein, we review the current research progress regarding stem cell-
based therapies for hair regeneration, especially those based on the CM
and exosomes, describing their therapeutic potentials and possible
mechanisms. Based on the published research, the studies addressing
the use of stem cell-based therapies in hair regeneration are limited.
Also, there still remain several challenges in relation to the mass pro-
duction and clinical application. Nevertheless, the approaches are
promising since the outcomes from these studies are encouraging
(Ramdasi and Tiwari, 2016).

2. Currently available and emerging treatments for hair loss

Although hair loss is highly prevalent in our society, effective
treatments are lacking. Currently available treatments (Fig. 1), such as
surgical procedures and medications, cannot meet the satisfaction of
most patients due to the unfavorable outcomes, impermanent results or
undesirable side effects. The HF transplantation that involved advanced
surgical treatment is limited by the shortage of donor hair, the reduced
viability of cells, and expensive and time-consuming nature of the
procedure. Furthermore, the result is often temporary due to the pro-
gressive property of hair loss conditions (Mohammadi et al., 2016;
Oweczarczyk-Saczonek et al., 2018; Tully et al.,, 2010; Zhang et al.,
2014).

Minoxidil and finasteride, the only two medications available for
the treatment of AGA that are approved by the Food and Drug
Administration, are associated with variable efficacy and varying de-
grees of side effects (Falto-Aizpurua et al., 2014; Gupta and Charrette,
2015; Rossi et al., 2016; Shapiro and Kaufman, 2003). Minoxidil is a
prodrug and can be converted by sulfotransferase into minoxidil sulfate,
which is a potassium channel opener (Jahangir and Terzic, 2005;
Roberts et al., 2014). The specific mechanism of inducing hair growth
has not been elucidated, but may be related to its vasodilatory and pro-
angiogenesis effects (Li et al., 2001). As the first-line pharmacologic
recommendation for both male and female patients with AGA, minox-
idil has been proved effective for slowing hair loss by plenty of ran-
domized, double-blind, and case-control studies (Ej et al., 2016; Olsen
et al., 2007, 2002). However, it does not work for all patients, with only
38.3% reporting improved hair regrowth (Olsen et al, 2007).

Moreover, there is a risk of accelerated hair loss if the medication is
discontinued after a prolonged use (Rossi et al., 2012; Zhang et al.,
2014). The adverse events that occur with topical minoxidil include
contact dermatitis, pruritus, dryness and facial hypertrichosis (Levy and
Emer, 2013). Finasteride, a selective inhibitor of type II 5a-reductase, is
effective in preventing androgen dependent miniaturization of HFs by
blocking the conversion of testosterone to dihydrotestosterone (York
et al., 2020). A daily dose of 1 mg is recommended for the treatment of
AGA in men, and it should be continued for at least 12 months to de-
termine its efficacy (Blumeyer et al., 2011). While finasteride halted
hair loss in over 95% of men, only 66% achieved moderate hair re-
growth and 5% showed marked hair regrowth (Kaufman et al., 1998;
York et al., 2020). Additionally, the treatment needs to be continued
indefinitely to maintain efficaciousness (Blumeyer et al., 2011). The
most concerning side effects are sexual dysfunction, mood disorders
and increased risk of prostate cancer in men (Traish et al., 2014). Be-
sides, long-term use of finasteride may be associated with the devel-
opment of insulin resistance, type 2 diabetes, non-alcoholic fatty liver
diseases, dry eye disease and potential kidney dysfunction (Traish,
2020). As another hormone modulator, spironolactone competitively
blocks androgen receptors and inhibits ovarian androgen production
(Sinclair et al., 2005). For female patients, it is an off-label option to
address alopecia, which is prescribed at 50-200 mg once daily
(Harfmann and Bechtel, 2015). Also, spironolactone needs to be ad-
ministrated continuously for 6 months to assess its full effects. It has
been reported that only 44% women achieved hair regrowth after re-
ceiving the treatment of oral spironolactone (Sinclair et al., 2005).
There may be some transient side effects of lethargy, nausea and me-
norrhagia, as well as lasting side effects of hyperkalemia, hypotension
and teratogenicity (Levy and Emer, 2013). Therefore, alternative
therapies with improved therapeutic efficacy and decreased adverse
effects are needed.

With the advancement of regenerative medicine, stem cell-based
therapies have opened new routes to cope up with the challenges posed
by the conventional hair loss treatments. Stem cells are involved in the
development and regeneration of tissues and organs, with the self-re-
newal ability and multi-lineage differentiation potential (Bacakova
et al.,, 2018; Moore and Lemischka, 2006; Weissman, 2000). The
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transplantation of multipotent stem cells from adipose (Zanzottera
et al., 2014), bone marrow (Iman Hamed et al., 2016), follicle (Gentile
et al., 2017a), and umbilical cord blood (Yoo et al., 2010) could re-
generate HFs in the skin; relevant articles in this regard have been re-
viewed by Owczarczyk-Saczonek et al. (2018). Advances in stem cell
transplantation might possibly make HF regeneration a reality, with
weak immunogenic potential and high multipotential differentiation
(Falto-Aizpurua et al., 2014; Richardson et al., 2016). Nonetheless, the
transplantation of pluripotent stem cells harbors a risk of tumor-
igenicity which is associated with self-renewal (Ben-David and
Benvenisty, 2011; Vizoso et al., 2017). Also it attracts regulatory sur-
veillance since stem cell transplantation for hair loss treatments is in its
infancy and needs to be established (Ramdasi and Tiwari, 2016). In
addition, the cost is high because of the short shelf life and requirement
of specialized production, transportation and storage conditions
(Gunawardena et al., 2019). Another emerging treatment is the injec-
tion of autogenous platelet-rich plasma (PRP) into the areas of alopecia.
PRP is a concentrate of human platelets that contains a number of
growth factors secreted by platelets (Giordano et al., 2017). It is widely
studied in the treatment of AGA and alopecia areata, yet the outcomes
are conflicting (Gentile and Garcovich, 2019; Jha et al., 2018; Singh,
2015). Due to lack of comparability between studies, it is difficult to
interpret the efficacy of PRP (Badran and Sand, 2018; York et al.,
2020). Apart from the stem cell transplantation and PRP therapy
mentioned above, CM and exosome derived from stem cells have fueled
the field of hair research in recent decades due to the demand for more
safe, efficient and cost-effective therapies.

3. CM derived from stem cells for hair regeneration

The interactions of diffusible factors and morphogens with their
cognate receptors constitute a complex network for the intercellular
crosstalk in HFs, influencing the phases of HFs (Bernard, 2017). Stem
cells are able to produce and release these diffusible factors, such as
growth factors and cytokines, which can activate neighboring cells by
paracrine effects (Lee et al., 2011; Liang et al., 2014; Zhang et al.,
2014). It has been reported that up to 80% of the regenerative potential
in transplanted stem cells is regulated through paracrine activities of
paracrine factors (Chimenti et al., 2010; Maguire, 2013). Therefore, the
secreted substances from stem cells have drawn wide attention for their
potential use in hair regeneration. Moreover, some studies suggested
that the cell-sourced secretome and vesicular elements in CM may work
in concert to promote HF regrowth (Pawitan, 2014; Vizoso et al., 2017).

3.1. Growth factors and cytokines for hair regeneration

The factors that are secreted by stem cells and are present in CM,
consist of vascular endothelial growth factor (VEGF), insulin-like
growth factor (IGF), hepatocyte growth factor (HGF), platelet-derived
growth factor (PDGF), bone morphogenetic proteins (BMPs), inter-
leukin-6 (IL-6), microphage colony-stimulating factor (M-CSF) and
other cytokines, which are well-documented to be correlated with hair
regrowth through diverse mechanisms (Kinnaird et al., 2004; Kruglikov
and Scherer, 2016; Pawitan, 2014). For example, VEGF accelerates hair
regeneration and augments the size of HFs and hair shafts by inducing
perifollicular vascularization (Yano et al., 2001). IGF-1/IGF binding
protein-1 complex and BMPs both act on dermal papilla cells (DPCs) to
restore and maintain the hair-induction ability (Bak et al., 2018; Rendl
et al.,, 2008). The paracrine hormone HGF can promote follicular
growth potentially by increasing the expression of -catenin (Qi et al.,
2016). In addition, IL-6 and M-CSF are both involved in wound-induced
hair regrowth (Talavera-Adame et al.,, 2017). Considering that the
natural response related to hair regeneration is a complex process in-
volving the activation and differentiation of HFSCs, a group of para-
crine factors rather than one single paracrine factor in CM cocktail are
responsible for triggering responses (Gunawardena et al., 2019).

European Journal of Pharmacology 881 (2020) 173197

Further studies are required to identify and up-regulate the key growth
factors and cytokines that are favorable for hair regeneration and
growth (Ramdasi and Tiwari, 2016).

3.2. CM applications and potential mechanisms

Stem cell-derived CM is widely studied as hair regenerative medi-
cine (Table 1). For instance, adipose-derived stem cell-CM (ADSC-CM)
stimulates hair growth through the combined effects of diverse bioac-
tive factors. These factors act in concert to promote the proliferation of
DPCs via activation of both Erk and Akt signaling pathways, modulate
the cell cycle of DPCs through upregulating the expression of Cyclin D;
and CDK,, and protect DPCs from damage caused by androgens and
reactive oxygen species (Won et al., 2017, 2010).

On account of the cell-free state, a main advantage of CM would be
its immunocompatibility with its recipients; thus, the donor-recipient
match, which is a prerequisite in cell-based therapies, will not be re-
quired (Gunawardena et al., 2019). In addition, some safety concerns,
such as tumorigenicity potentially associated with the stem cell trans-
plantation, would not be considered (Bermudez et al., 2016, 2015; Eiro
et al., 2014). Compared with stem cells, CM needs lower time and cost
for production, with higher possibility of producing off the shelf and
longer shelf life (Gunawardena et al., 2019). Furthermore, CM can
achieve mass manufacture, freeze drying, and easy packaging, trans-
portation, and storage, which is more economical and practical for
clinical applications (Osugi et al., 2012).

There is no doubt that the utilization of CM as hair regenerative
medicine is in its infancy. Inevitably, there are several challenges that
need to be overcome. The type and level of paracrine factors may be
variable, depending on the sources, age and the culture conditions of
the stem cells (Maguire, 2013; Park et al., 2010). So, selecting an op-
timal source of stem cells is of paramount importance, and evaluating
the levels of paracrine factors at different passages could help to un-
derstand the optimal growth stage of stem cells to obtain a specific set
of factors (Gunawardena et al., 2019). Additionally, exploration of
culture conditions, such as hypoxia/normoxia and monolayer/3D cul-
tures is an indispensable aspect to raise the content of bioactive factors
in CM (Bhang et al., 2014; Park et al., 2010). It is also essential to
standardize the aforementioned parameters to obtain the CM with a
consistent composition. With respect to the safety concern, contra-
dictory results have been described. While it has been reported that
bone marrow-derived mesenchymal stem cells (MSCs)-CM has an anti-
tumor effects on non-small cell lung cancer cells, studies conducted
have also reported that the treatment of bone marrow-derived MSC-CM
achieved an equivalent effect of potentiating tumor growth that is si-
milar to the effect of utilizing MSCs in vitro (Zhu et al., 2011). More-
over, cells cultured in xeno-free media are recommended to avoid the
transmission of pathogens and other harmful agents carried by the
addition of serum containing media, which further ensures the safety of
CM in clinical usage (Spees et al., 2004). Furthermore, the short half-
lives and consumption of the paracrine factors in vivo upon adminis-
tration may require large and frequent dosages (Khosravi et al., 2007;
Teixeira et al., 2016).

3.3. Strategies to up-regulate the therapeutic effects of CM for hair
regeneration

Although previous studies have demonstrated that CM has the po-
tential to promote hair regeneration, unmet needs exist for enhancing
its therapeutic efficacy due to the low concentration of paracrine factors
(Choi et al., 2018b; Gunawardena et al., 2019). Besides, there are both
anti-inflammatory and pro-inflammatory cytokines, pro-angiogenic and
anti-angiogenic factors in CM, indicating that various factors present in
CM may represent a balanced cocktail. The balance may determine the
final effect. Accordingly, different types of strategies, such as environ-
mental stimulus, biomacromolecules preconditioning, and gene
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earlier anagen, with most bulbs located at the dermis-subcutis border (iv) skin thickness (v) bulb diameter (vi) hair cycle scores (vii) percentage of hair follicles in
different phases. Scale bar: 100 pm. Data are expressed as mean = S.D. (n = 6 per group). *P < 0.05, **P < 0.01 (Zhou et al., 2018). (C) Treatment with DPC-
exosomes delays entry into catagen. (i) The time course for the transition from anagen to catagen of HFs in mice (ii) H&E staining of the DPC-exosomes treated skin:
HFs were in anagen VI, with enlarged hair bulbs (iii) H&E staining of PBS treated skin: HFs were in catagen, with narrower hair bulbs (iv) skin thickness (v) bulb
diameter (vi) hair cycle scores (vii) percentage of hair follicles in different phases. Scale bar: 100 pm. Data are expressed as mean = S.D. (n = 6 per group).
*P < 0.05, **P < 0.01 (Zhou et al., 2018). (Reprinted from Elsevier, with permission).

3.3.1. Environmental stimulation
Since stem cells are usually thought to reside in the hypoxic areas of
the body, hypoxia serves an essential role in maintaining the stem cell

Table 2
Studies that involved the use of stem cell-derived EVs for hair regeneration.

Donor EVs Diameter References . X R
(nm) niche (Haque et al., 2013; Hawkins and Sharp, 2013; Vizoso et al.,
2017). It has been demonstrated that culturing stem cells, especially
Ginseng root Exosome-like  20-500 (Choi et al. ADSCs, under hypoxic conditions would up-regulate the secretion of
vesicles (2018)) most growth factors and maintain the undifferentiated phenotype for
Hu-newborn foreskin SCs ~ Exosomes 20-60 Sahin et al. (2018) & . . . p R typ
MSCs Exosomes NA Levi et al. (2013) self-renewal (Pawitan, 2014). There is a commercially available pro-
Hu-DPCs Exosomes 50-150 Zhou et al. (2018) duct, AAPE® (Prostemics, Seoul, Korea), containing proteins from
Hu-BM-MSCs Exosomes ~95 Yang et al. (2019) ADSC-CM cultured under hypoxic conditions. Intradermal injection of
Deer antlerogenic MSCs  EVs ~120 Seo et al. (2018) AAPE® could significantly increase the number and thickness of hairs in
Mouse-BM-MSCs EVs 30-250 Rajendran et al.

both male and female alopecia patients (Fig. 3A-C) (Fukuoka and Suga,

(2017)
2015). Notably, the treatment on one side could affect the other side in

Hu: human, MSCs: mesenchymal stem cells, SCs: stem cells, EVs: extracellular
vesicles, BM: bone marrow, DPCs: dermal papilla cells.

engineering have been employed to change the composition and
abundance of paracrine factors, thereby influencing the regulatory ef-
fects of CM on HFs (Fig. 2).

the half-side comparison study, which perhaps could be attributed to
the local circulation (Fig. 3D). However, the pain during and after in-
jection is a common complication, resulting in reduced patient com-
pliance. Shin et al. (2015) tactfully resolved this issue with the assis-
tance of micro-needle roller; they pre-treated the bald scalp with micro-
needle roller prior to the topical application of ADSC-CM to enhance the
transdermal delivery efficacy.

Moreover, ultraviolet B (UVB) radiation is another pre-treatment
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Fig. 5. Treatments with mesenchymal stem cell-exosomes promote hair regeneration in the treated area. (A) Photographs of mice treated with microneedles which
were loaded with exosomes and a small molecular drug UK5099 (G2), microneedles which were loaded with UK5099 (G3), microneedles which were loaded with
exosomes (G4), topical application of UK5099 (G5), subcutaneous injection of exosomes (G6), and topical application of minoxidil (G7). The untreated mice were set
as the control (G1): As compared with G1, both the administration of exosomes-loaded microneedles (G4) and subcutaneous injection of exosomes (G6) exhibited
therapeutic effects. The treated skin area was outlined by the blue dotted line. (B) Hematoxylin & eosin staining of the skin at day 15 post administration of G1-G7.
Scale bar: 300 pm. (C) Transition of the hair phase with the treatment of G1-G4. Data are expressed as mean = S.D. (n = 3). (D) The covered area by regrowed hair
in the skin with the treatment of G1-G4. Data are expressed as mean + S.D. (n = 3). (E) Quantification analysis of the hair follicle cycle in mice with the treatment of
G1-G4. (F) Hair density of mice with the treatment of G2-G4 compared to wild-type mice (GO). Data are expressed as mean = S.D. (n = 10). *P < 0.05,
**P < 0.01, ***P < 0.001 (Yang et al., 2019). (Reprinted with permission from (ACS Nano, 2019, 13, 4, 4354-4360). Copyright (2019) American Chemical

Society). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

method for stem cells (Jeong et al., 2013). Similar to hypoxia, UVB
mediates the generation of reactive oxygen species. According to pre-
vious reports, the production of reactive oxygen species correlates with
the proliferation, migration, and paracrine activities of ADSCs (Kim
et al., 2011). Thus, it is well-reasoned that the treatment of low-dose
UVB (10 or 20 mJ/cm?) could up-regulate the expression of ADSC-de-
rived growth factors, and the corresponding CM was able to promote
the proliferation of DPCs and outer root sheath cells. Furthermore,
subcutaneous injection of such CM was capable of inducing the tran-
sition of HFs from telogen to anagen in vivo (Jeong et al., 2013).

3.3.2. Biostimulation
A growing body of evidence suggests that appropriate stimulation
on stem cells by biomolecules could make the resulting CM more

conducive to hair regeneration. Vitamin D is synthesized in epidermal
keratinocytes when exposed to UVB (Bouillon et al., 2008). As a hair-
growth associator, vitamin D analog is able to up-regulate the expres-
sion of transforming growth factor-f2 and the activity of alkaline
phosphatase in human DPCs, both of which are the indices for hair-
inductive capacity, and promote the differentiation of stem cell popu-
lations into DPCs (Doi et al., 2012; Inoue et al., 2009; Jung et al., 2015).
It has been reported that vitamin D3 pre-activation could augment the
content of VEGF in preadipocyte CM, which improved the hair re-
generation effects by regulating angiogenesis (Jung et al., 2015). Al-
ternatively, pre-treatment with vitamin C could also up-regulate the
expression of HGF, IGF binding protein-6, VEGF, basic fibroblast
growth factor and keratinocyte growth factor in ADSCs, thereby indu-
cing the hair-regenerative potential of ADSC-CM in vitro (Kim et al.,
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Table 3

Currently reported clinical trials with CM derived from stem cells for alopecia.

NCT number or Ref

Subjects

CT phases

Conditions

Treatment

Type of MSCs

NCT03676400
NCT03662854

Female and male, 18-60 years old, with AGA

Female, 40-70 years old, with FPHL

NA

AGA

Apply 5% CM directly on hair and scalp twice a day for 24 weeks

Umbilical cord blood-derived MSCs
Hypoxia-induced multipotent cells

FPHL
AGA

Intradermally inject 2 ml HSC separated by 6 weeks (total of 4 ml)

Intradermally inject 0.8 ml HSC for 12 weeks

56 participants, male, 21-65 years old, with AGA NCT01501617

/i

Hypoxia and bioreactor-induced dermal cells

Hypoxia-induced Hu-ADSCs
Hypoxia-induced Hu-ADSCs

Shin et al. (2015)

27 female patients

NA
NA

FPHL

Weekly apply for 12 consecutive weeks with a micro-needle roller

22 patients (11 men and 11 women) + Fukuoka and Suga (2015)

10 patients (8 men and 2 women)

alopecia

Six sessions of intradermal injection with ~3-4 ml (0.02 ml/cm?)

Fukuoka et al. (2012)

25 patients (13 men and 12 women)

NA

AGA

Four weekly sessions of intradermal injection with ~3-4 ml (~0.02-0.05 ml/
2
cm?)

Hypoxia-induced Hu-ADSCs

Narita et al. (2019)

40 patients (21 men and 19 women)

AGA or FPHL NA

Six sessions of intradermal injection (1 vial of AAPE® in each session)

Hypoxia-induced Hu-ADSCs

MSC: mesenchymal stem cell, ADSC: adipose-derived stem cell, HSC: hair stimulating complex, FPHL: female pattern hair loss, AGA: androgenetic alopecia, Hu: human, CM: conditioned medium, NA: not available, AAPE:

a commercialized ADSC-CM product cultured under hypoxic conditions.
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2014). Similarly, the treatment with CM of ADSCs pre-activated with
LL-37 (a naturally occurring 37-animo acid sequence) manifested a
strong effect on hair growth promotion in vivo through enhanced
paracrine effects of various growth factors (Yang et al., 2016).

3.3.3. Gene engineering

Based on our previous work, genetic modification of stem cells holds
promise for enhancing the expression of distinct growth factors (Jiang
et al., 2019; Li et al., 2015b). The CM derived from gene-engineered
stem cells with altered composites has generated a lot of interest for
enhanced therapeutic effects in hair loss. Wingless-type mouse mam-
mary tumor virus integration site (Wnt) signaling pathway plays a vital
role in regulating hair morphogenesis and regeneration (Dey-Rao and
Sinha, 2017; Li et al., 2015a; Reddy et al., 2001). Wnt7a correlates with
the increased number of HFs in the wound site (Ito et al., 2007) and
Wnt10b regulates the telogen-to-anagen transition of HFs (Li et al.,
2013). It has been reported that intradermal injection of CM obtained
from retroviral-mediated Wntla-overexpressing bone marrow MSCs
could induce hair regrowth by actively maintaining and facilitating the
capacity of DPCs to induce hair cycling (Dong et al., 2014, Dong et al.,
2017b). Similarly, Wnt7a-MSC-CM is also capable of inducing re-
generation of more HFs via cellular communication as compared to
normal MSC-CM (Dong et al., 2017a).

Apart from modifying the expression of Wnt proteins, there are also
studies about introducing genes of trichogenic factors to stem cells.
Choi et al. (2018b)introduced genes of three trichogenic factors, PDGF-
A, SOX2, and p-catenin, to ADSCs and found that the derived CM could
increase the number of vibrissal HFs in anagen.

4. Exosomes and their applications

Since the HF is a compartmentalized organ, it is expected that the
cell-cell communications in HFs could be mediated by a class of mes-
sage entities like EVs, especially exosomes (Bernard, 2017; Braicu et al.,
2015). Composed of exosomes and microvesicles, EVs (30-1000 nm in
diameter) can be secreted by most cell types into the CM (Gangadaran
et al., 2017; Kalimuthu et al., 2016; Rajendran et al., 2017). Exosomes
are a specific class of phospholipid bilayer EVs, with a diameter of
40-120 nm and a sucrose density of 1.13-1.19 g/ml (Fig. 4A) (Jiang
and Gao, 2017; Liu et al., 2013; Raposo and Stoorvogel, 2013). Exo-
somes contain functional DNAs, RNAs, proteins and lipids that have
regulatory effects on the recipient cells (Hong et al., 2009; Valadi et al.,
2007). It has been identified that exosomes are able to carry hydro-
phobic Wnt proteins on their surface to induce the activation of p-ca-
tenin over a distance, which is a key signaling pathway involved in the
regulation of hair morphogenesis and regeneration (Dey-Rao and Sinha,
2017; Gross et al., 2012; Li et al., 2015a; Reddy et al., 2001).

Table 2 lists the published studies about employing EVs, including
exosomes, for hair regeneration. Exosomes that are derived from MSCs
are frequently used in current hair regrowth experiments (Fig. 4 and 5).
A patented study demonstrated that a pharmaceutical composition
comprising MSC-derived exosomes may be capable of promoting hair
growth (Levi et al., 2013). Increasing pieces of evidence indicate that
the regulatory function of DPCs with mesenchymal-like phenotype on
HF regeneration mainly depends on the paracrine mechanism (Al-
Nuaimi et al., 2014; Mohammadi et al., 2016; Won et al., 2012). Exo-
somes are small vesicles that are important components of paracrine
signaling (Zhou et al., 2018). Accordingly, Zhou et al. (2018) employed
exosomes derived from DPCs to regulate the growth and development
of HFs (Fig. 4B and C).

Noticeably, exosomes encapsulate the therapeutically relevant mo-
lecules (proteins and nucleic acids) in vesicles, protecting them from
degradation, which is different from the cytokines, growth factors and
nucleic acids in CM that are rapidly degraded (Basu and Ludlow, 2016;
Vizoso et al., 2017). In this sense, the durability of exosomes makes it
possible to obtain abundant exosomes through simply extending the
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Table 4
Comparison of stem cell, CM and exosomes for hair regeneration.
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Therapeutic strategies Advantages

Limitations

Stem cell transplantation Good efficacy

Weak immunogenic potential (Falto-Aizpurua et al., 2014; Richardson et al.,

2016)
High multipotential differentiation (Falto-Aizpurua et al., 2014; Richardson
et al., 2016)

CM Immunocompatibility (Gunawardena et al., 2019)

Improved safety compared with stem cell transplantation (Bermudez et al.,

2016, 2015; Eiro et al., 2014)

Feasibility of mass production (Osugi et al., 2012)
Low cost (Gunawardena et al., 2019)

More practical for clinical application (Pawitan, 2014)

Exosomes Protect ABIs from degradation (Basu and Ludlow, 2016)

More stable for large-scale production (Basu and Ludlow, 2016)

Safety considerations: tumorigenicity and transmission of infection
(Ben-David and Benvenisty, 2011; Vizoso et al., 2017)

Tight regulations (Ramdasi and Tiwari, 2016)

Short shelf life (Gunawardena et al., 2019)

High cost: strict production, transport and storage conditions
(Gunawardena et al., 2019)

Low concentration of paracrine factors with limited therapeutic
efficacy (Maguire, 2013)

Difficulty in obtaining the CM with a consistent composition
(Gunawardena et al., 2019)

Short half-lives of paracrine factors (Khosravi et al., 2007)
Require frequent administrations with large doses (Bhang et al.,
2014)

Lack of effective isolation method (Jiang and Gao, 2017)

Lack of guidelines for large-scale manufacturing (Jiang and Gao,

Retain the ability of homing, and being internalized by the targeted cells 2017)

(Altaner, 2015; Altanerova et al., 2016; Vizoso et al., 2017)

Potential biological safety issues (Lai et al., 2014; Stenqvist et al.,
2013; Valadi et al., 2007)

ABI: active biological ingredient, CM: conditioned medium.

culture of the producer cell line. This is not the case for soluble ele-
ments in CM, which are vulnerable to degradation while in extended
culture (Basu and Ludlow, 2016). Moreover, exosomes can trigger
tissue-specific responses by guiding informational molecules to the
target cells (Santangelo et al., 2017). Consequently, it is promising to
modify stem cells to generate exosomes possessing rich cargos of the
mRNAs, microRNAs and proteins relevant to hair regrowth, therefore
retaining the ability of homing to HFs, and being internalized by the
target cells (Altaner, 2015; Altanerova et al., 2016; Vizoso et al., 2017).
Exosomes are present in CM, but in general, the content is not high.
Hence, there is an urgent need to develop more effective methods to
isolate exosomes from CM, which may balance both efficiency and
purity. Apart from that, the administration of exosomes harbors the
potential risks of the uncontrolled transfer of genetic information, im-
mune responses as well as biodistribution (Lai et al., 2014; Stenqvist
et al., 2013; Valadi et al., 2007). Thus, a comprehensive understanding
of the correlations between the dosage, biodistribution and elimination
dynamics for exosomes is critical to reduce the potential risks (Basu and
Ludlow, 2016).

5. Clinical trials of CM-based therapy in alopecia

A few of human clinical studies on the application of stem cells-
derived CM for the treatment of alopecia have been carried out
(Table 3). However, there are no clinical studies regarding the use of
exosomes or EVs for the treatment of hair loss. Besides intradermal
injection, one clinical trial (NCT03676400) employed CM of human
umbilical cord blood-derived MSCs to alleviate hair loss, which was
topically applied on the hair and scalp by the subjects themselves, in-
creasing convenience and patient compliance. The efficacy evaluation
indices were particularly comprehensive, including the total hair den-
sity, telogen hair density, anagen hair density, hair growth speed, hair
diameter and visual assessment before and after treatment.

AAPE®, as previously mentioned, is the commercialized ADSC-CM
freeze-dried powder that has been widely used in clinical studies to
treat hair loss (Fukuoka et al., 2017, 2012; Fukuoka and Suga, 2015).
Notably, the ADSCs are cultured under hypoxia for 2 weeks to collect
the CM. Clinical studies (Table 3) have shown the satisfactory efficacy
of AAPE® in hair regeneration.

There are three points worth noticing from these clinical studies.
First, hypoxic pre-treatment is a promising method to induce stem cells
to secret more growth factors and cytokines that are conducive to hair
regeneration. Second, most clinical applications of CM are intradermal
injection and require long treatment sessions. Although there are no

severe adverse effects observed during treatment, it can affect patient
compliance to a large extent. Subsequent studies can combine CM with
a more patiently compliant delivery system without compromising the
efficacy. In addition, it is necessary to follow up on patients after the
completion of the treatment. Overall, more randomized, controlled,
double-blind studies with large sample size, objective evaluation
methodologies and long follow-up periods, as well as improved delivery
systems are needed to make it possible to have more products with
clear-cut benefits in the treatment of alopecia.

6. Discussion

Recent advances in regenerative medicine have raised new hopes
and paved the way for the development of new therapies against hair
loss. The merits and demerits of stem cells, CM and exosomes as re-
generative medicine are separately shown in Table 4. While the use of
stem cells in hair regeneration has got high expectations, concerns
about its biosafety have hindered the clinical applications.

To overcome these challenges, induction of HFSCs in their native
niche by CM, and/or exosomes to stimulate the regeneration process, is
a promising cell-free approach. As the hair regenerative medicine, the
complex composition of CM, and/or exosomes is likely to hamper the
regulatory approval even if their certain therapeutic efficacy has been
determined. More randomized, controlled double-blind studies are re-
quired to confirm the role of CM and/or exosomes in the stimulation of
hair regrowth and to define the mechanism of actions. There is a ten-
dency to enhance the secretion of bioactive factors with effective
methods for better therapeutic effect. To increase the likelihood of
clinical translation, it is inevitable to standardize the cultivation of stem
cells, the collection, preservation and validation of CM, as well as the
isolation of exosomes. In addition, the combination of CM and/or
exosomes with a non-invasive delivery system, without compromising
the efficacy will lead to convenience and patient compliance.
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